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Gibbsian versus non-Gibbsian nature of stationary states
for Toom probabilistic cellular automata via simulations

Danuta Makowiec*
Institute of Theoretical Physics and Astrophysics, Gdan´sk University, ulica Wita Stwosza 57, 80-952 Gdan´sk, Poland

~Received 30 January 1997!

Ising-type behavior found in cellular automata with the majority vote rule hints at the possible relation
between stationary states of these cellular automata and Gibbs states of some equilibrium statistical model.
Results of computer experiments aimed at testing properties of stationary states for Toom probabilistic cellular
automata such as decay of correlations, boundary configuration dependence, and large-fluctuation analysis are
presented. By the cluster volume analysis the estimation for energy density carried by stationary states is
proposed.@S1063-651X~97!00406-6#

PACS number~s!: 05.50.1q, 05.70.Jk
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I. INTRODUCTION

The standard Toom probabilistic cellular automata are
fined on the square lattice of two-level spins with local
teractions being the perturbed majority vote of three sp
north, east, and center@1#. That is, the probability that a
center spinsx,y occupying an (x,y) node on a square lattic
takes at the next time the valuesx,y8 depends on the spin
states of its north neighborsx21,y , and its east neighbo
sx,y11, and itself as

Prob$~sx,y ,sx21,y ,sx,y11!→sx,y8 %

5 1
2 @11~122«!sx,ysgn~sx,y1sx21,y1sx,y11!#. ~1!

Thus, with probability 12«, the dynamics follows the deter
ministic majority vote rule over the triangle formed by ce
ter, north, and east neighboring spins and with probab
« opposes this rule. One can notice that the determini
Toom rule, i.e.,«50, becomes the Domany cellular a
tomata rule for the zero temperature@2,3#.

The Toom cellular automata are known from their critic
behavior. The property that is characteristic of the first-or
phase transition, namely, the discontinuity of the order
rameter — magnetization — can be identified when o
changes random initial configurations. For purely determ
istic dynamics, if an initial configuration is random, i.e., sp
states are chosen independently of each other with prob
ity p to obtain an up state, then one observes ergodic be
ior for all p enough far away from 1/2. The resulting statio
ary configuration is homogeneous with all spinsup ~for
p.1/2) or all spinsdown ~for p,1/2). If an initial configu-
ration is prepared withp being close to 1/2, then some oth
stationary configurations appear, partially due to the perio
boundary conditions of simulated systems. These station
configurations are calledflat-interface@4# or mixed@6# con-
figurations because they consist of two homogeneous dis
areas, the boundary of which is a straight line~vertical, hori-
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zontal, or diagonal along the NW-SE direction!. It has been
found in simulations that the system is chaotic there.
change of a single spin state can cause the cellular auto
system to be attracted to different stationary configurati
~that so-called damage-spreading study@5#; see@6# for de-
tails!.

The probabilistic Toom model provides the possibility
study thermodynamics phenomena. In particular, station
states of this model can be considered as candidates for e
librium states of some thermodynamic system with the«
parameter mimicking temperature effects. This way one
look for links between the stationarity of probabilistic cell
lar automata and some equilibrium systems@7,8#.

In our experiments we always start with a system with
spins up ~the magnetization is11!. The standard Monte
Carlo procedure leads such a system to the stationary
figurations corresponding to a given thermal perturbati
The stationary cellular automata states are represented a
erages over thousands of stationary configurations obta
in many steps of discrete evolution. The size of the lattic
considered in experiments varies fromL515 ~in the finite-
lattice-size scaling! to L5500~the locality study!, depending
on the particular experimental demands, and thermaliza
time is equal to 50L.

With our results we will discuss the following problem
whether or not the stationary configurations arising on a s
lattice from the probabilistic cellular automata evolution, i.
states represented by an invariant measure with respect t
probabilistic cellular automata stochastic transformati
possess the Gibbsian nature. By the Gibbsian nature of
probabilistic measurem(s) we mean that we can associa
some ‘‘reasonable’’ functionH(s) @4# that represents energ
carried by a configurations. Formally, the HamiltonianH
arising from the Gibbs measurem reads

H~s!52 lnm~s!1const, ~2!

where the temperature parameter is included in the Ha
tonian. To give sense to the formal formula~2! one needs to
know how the probability of any finite volume configuratio
sL depends on the boundary configurationsLc, i.e.,
Prob$(sLusLc)%.
6582 © 1997 The American Physical Society
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55 6583GIBBSIAN VERSUS NON-GIBBSIAN NATURE OF . . .
FIG. 1. Contour plots of the two-point corre
lation function corr (sO ,sx,y) between some
spinsO , the origin, and a spinsx,y for different
noise levels«: ~a! 0.08,~b! 0.09,~c! 0.10, and~d!
0.19. x,y are horizontal and vertical coordinate
of a spinsx,y , respectively, and they are mea
sured in the lattice units. Notice the rapid chan
of properties at« crossing 0.090.L5100, the
thermalization time is equal to 5000 time step
and averages are made over 20 000 time step
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The link between probabilistic cellular automata statio
ary evolution and equilibrium systems in thespace3 time
lattice has been rigorously found. In this case the lo
Hamiltonian is expressed by the logarithm of the transit
probabilities~see, e.g.,@9,3#!. It has been also found that a
stationary measures of probabilistic cellular automata aris
in the high-noise regime are Gibbsian@3#. In this regime the
weakness of correlations between spins makes the prob
ity of any configuration in a finite volume independent
distant spins@3#.

However, there is still little known about the nature
stationary measures for systems apart from this regime@10#.
Although the Gibbsian nature of the mentioned Domany c
lular automata model has been proved rigorously@3#, be-
cause of the presence of long-range correlations in To
stationary configurations, there exists a suspicion that
locality of interactions can be violated and one cannot g
any reasonable description for these interactions@10#.

We observed correlations between two spins of the To
model: the originO and its sub-sequent neighbors on
square lattice with respect to the noise level«. The results
are shown in Fig. 1. One can notice the critical change in
behavior of the two-point correlations with« crossing 0.09.
Additionally, at this« value the average magnetization of t
whole configuration rapidly goes down to zero. For coup
map lattices it is known that increasing the spatial correlat
leads to the merging of new ground states@11#. Therefore, in
the case of the Toom model, because of the two propertie
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long correlations and zero of the total magnetization, one
expect that the stationary state has changed into a mixtur
homogeneous islands of two basic phases: the (1) phase and
(2) phase~see@12# for details!. Moreover, these propertie
give rise to the features of some equilibrium system even
the absence of a Hamiltonian energy.

II. EXPERIMENTS AND RESULTS

A. The two-point correlation function

First we want to determine«cr , the critical value of the
noise parameter at which this critical phenomenon ta
place in the limit of infinite volume. The static critical be
havior of any thermodynamic system in the infinite latti
limit can be extracted from the bulk properties at the critic
point of finite systems@13,14#. The current resolution is suc
that it is reasonable to approximate the finiteness of
simulated lattice by@14#

«cr~L !5«cr1lL21/n ~3!

wheren is one of the static critical exponents, andl is a
constant dependent on the quantity from which the fin
lattice-size effect is extracted. Furthermore, it is known@14#
that the following quantities also vary with the system size
L1/n: the fourth-order magnetization cumultantU,
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wherem5L2d( is i is the magnetization, and the logarith
of any power of the magnetizationm, e.g., ln(umu), ln(m2).
Thus the location of the maximum slope forU, ln(umu), and
ln(m2) serves as an estimate of bothn and«cr(L).

Our results forU, ln(umu), and ln(m2) presented in Fig. 2
lead ton'0.9060.02. With n determined we can estimat
«cr'0.09160.002~at l'0.0760.01).

It is interesting to ask about the character of the decay
the correlations with the increase of the spin distance. In
3 we present this decay along the horizontal line. To find
whether the decay is of power-law or exponential type
present results on a log-log plot@Fig. 3~a!# and a log plot
@Fig. 3~b!#. For «P(0.090,0.100) we found that both nu
merical decay approximations, the exponential and po
law, are faithful with respect to the accuracy of our simu
tion errors.

It is known that if the decay of correlations goes down
u i2 j u2h, where u i2 j u denotes distance between two spi
and h,2, this means that the system described is hig
correlated with the Hamiltonian not in a quadratic form@9#.
According to results obtained by us, such a complicated
teraction can be considered as involved in stationary state
the Toom probabilistic model with«P(0.090,0.100), though
the range of this interaction seems to not exceed 20 la
units.

B. Locality of interactions

The next experiment is designed to study the so-ca
long-range order, i.e., to verify how any finite volume co

FIG. 2. A log-log plot of the lattice size dependenceL to the
maximum values of derivatives for the cumultantU of the absolute
value of the spin magnetizationumu, the logarithm of this absolute
value ln(umu), and the logarithm of the square of spin magnetizat
ln(m2) to estimate the finite lattice size influence. Some STD err
for this data are rather high, about 40%. The values ofa,b,c pro-
vide linear regression coefficients for the presented data withr 2

correlation coefficients for these fits.
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FIG. 3. ~a! Power-law decay of correlations corr (sx1 ,y
,sx2 ,y

)
between distant spins along the horizontal line~log-log plot!. Val-
ues a,b presented for the linear fits are found fo
4,ux12x2u,15. ~b! Exponential decay of correlation
corr (sx1 ,y

,sx2 ,y
) between distant spins along the horizontal li

~log plot!. The curves in~a! and~b! are labeled by the thermal nois
«. The values ofa,b,c,d provide linear regression coefficients fo
the corresponding data withr 2 the correlation coefficients for thes
fits.
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55 6585GIBBSIAN VERSUS NON-GIBBSIAN NATURE OF . . .
figuration is conditioned by the distant surrounding bound
configuration@9,4,16#. For this purpose we observe prope
ties of a nonhomogeneous system.

The nonhomogeneous system considered consists of
homogeneous but disjoint areas where one area, calledin, is
put inside the other area, calledout. In such a system we tes
the influence of one homogeneity on the other one. The
configurations can be seen as boundaries for the in con
rations. The experiment goes as follows. First, both confi
rations evolve individually to have both configurations th
malized at the corresponding noise levels« in and «out and
with suitable initial phases. Then the in configuration is p
to the middle of the out configuration. Then the next th
malization process begins. The inhomogeneity of dynam
is kept all the time. The results obtained after this doub
thermalization time, by means of the average of magnet
tion along a lattice, for different noise levels« in and«out and
different initial out phases are shown in Fig. 4@the initial
phase of the in state is always~1!#.

One can observe that the boundary state out determ
the phase of the in state whenever both states are repres
by a stationary state of one phase, i.e.,« in ,«out!«cr . The
phase of the in state becomes the same as the out s
although there are two areas that are still different from e
other by the magnetization level. This ‘‘proves’’ Gibbsiane
nature of these stationary configurations@10#.

The influence of the boundary when the states in and
are near or within the critical regime is not obvious. Follo
for example, the dotted lines in Figs. 4~a!–4~c!, which rep-
resent states with«out50.08 ~both initial phases! for distinct
« in . If the correlations between spins in the in states
significant,« in is about«cr, then one can observe the effe
caused by the periodic boundary conditions. In general,
periodic boundary conditions add a large scale of sizeL into
the system. Any configuration observed from this scale
be seen as the sea of the out configuration with infinite m
regular islands of the in state. If the in state is weak,
means of correlating neighboring spin states, then each
land acts in isolation. However, the strong correlating pr
erties in the in state, together with good transmission pr
erties of the out state,«out,«cr , yield that the in islands ac
together as the boundary for the out configuration. The
lands can easily communicate with each other through
out state by adjusting the out state phase to their proper
Finally, we observe that the phase of the out configuratio
chaotic, i.e., undetermined, and the level of its magnetiza
is random; see particular examples of such behavior in
4~d!.

C. Block magnetization experiments

The basic notion for the last group of experiments res
from the so-calledwrong large-deviation properties@4#.
Namely, the probability that a configurations taken from the
probability distributionn is inside a finite volumeL, a typi-
cal configuration taken from some distributionm, decays ex-
ponentially in the volume ofL with ratei (mun), the relative
entropy density of the measurem with respect to the measur
n. Therefore, by measuring this probability one can estim
the relative entropy densityi (mun) as
y
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i ~mun!5 limL→`2
1

uLu
ln~Probn$sLis typical form%!.

~4!

Furthermore, if one found, e.g., via simulations, that

i l~mun!

5
1

l 2
ln~Probm$all spins are up in a squarel3 l %→ l→`0,

~5!

then it would provide thati (d1um)50, whered1 is the mea-
sure concentrated on the all spin-up configuration. Asd1 is a
non-Gibbsian measure, thenm is non-Gibbsian also@4#. We
perform experiments at«'«cr and observe the probability o
finding totally magnetized squares. Unfortunately, the eve
with blocks l3 l totally magnetized appear so seldom wi
l growing that it is difficult for us to estimate the correspon
ing probabilities. Therefore, we allow ourselves to violate
little the total magnetization demand by setting it
umu.0.9 ~for better illustration other properties of the sta
we also present probabilities to meet a block with magn
zation umu.0.8,0.6,0.4, suitable!. They results of these
block distributions are presented in Fig. 5~a!. They rather
stable their values fori l with l growing for blocks almost
complete magnetized and slowly decrease in the case of
magnetized blocks. However, because of the small amo
of data, this suggestion needs more verification.

If «,«cr , then we can look for the (2) phase in the
(1) phase by estimating i (m (2)um (1)). If
i (m (2)um (1)).0, then both measures must be non-Gibbs
because they are stationary measures of the same interac
@10#. The results fori l(m (2)um (1)) are presented in Fig. 5~b!.
According to them, the probability to find blocks with neg
tive magnetization very slowly decreases withl growing.

III. CONCLUSION

We have examined properties of stationary states in To
cellular automata that are in the regime of the second-t
phase transition. First, by varying the temperature param
« from «50 to «51/2 , at«P(0.09,0.10) we observe how
stationary states of the model change their basic prope
how these states transform from the states of either
(1) phase or the (2) phase into the equivalent mixture o
two phases.

Toom interactions have a so-called eroder property@1#; it
denotes that any finite island of one phase is smashed by
surrounding sea of the other phase. Therefore, station
states that are representatives of one phase possess
transmission properties. After a short time the whole syst
takes the phase of the out state. The dependence of a sta
ary state island on the boundary conditions is continuous,
local, for islands that are of one phase. One can say that
the thermalization process, which means adjusting the s
of an island, the stationary state remains the low-tempera
ground state of the Ising-type model.

However, if an island is of the stationary state with cri
cal properties, then it can oppose the outside world. One
say that at some« the eroder property is turned out by th
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FIG. 4. Magnetization of a spin site along the lattice. The total size of the latticeL5500; the inner lattice sizeL in5300,« in50.07 ~a!,
0.09 ~b!, 0.10~c!, and 0.12~d!; and different levels of«out are denoted at the corresponding curves. The initial phase ofout states is either
(2) or (1), while the in state phase is always (1). The averages are made over 30 000 time steps. 0 denotes the center of the lat
ig
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temperature effects and an island can survive. One m
compare this observation with the notion of the balance
tween the production of local errors and the transmiss
strength that was considered by Boldrighiniet al. @15# as the
ht
-
n

necessary condition for Ising-type transitions in coupled m
lattices. Thus properties of stationary states for the To
model considered with«.«cr are generated by the extreme
fragile balance present at the microscale. One can com
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55 6587GIBBSIAN VERSUS NON-GIBBSIAN NATURE OF . . .
this phenomenon with the condition of the detailed bala
of equilibrium states.

The Toom model is worth considering as it recalls t
Ising model. For the Ising model, the well-establish
Pirogov-Sinai theory@9,16# provides the tool for estimating
energy of any finite volume configuration via the notion o
contour. The contour can be seen as the area separatin
mogeneous islands of pure phases. The local energy ca
by the finite configuration is proportional to the total volum
of contours that it contains. It is not difficult to estimate t
energy carried by stationary states if one assumes only
definition of a site belonging to the cluster.

In the considered Toom model two such definitions c
be taken into account. Namely, a site belongs to a cluste
its Toom neighborhood is homogeneous or a site belong

FIG. 5. Decay ofi l(mun) with growing sizel of a square block
l3 l to estimate the relative entropy density for~a! i l(d6umst), with
d6 the measure with respect to the stationary measuremst at the
critical regime«50.095, and~b! i l(m (2)um (1)) the ‘‘amount’’ of
the (2) phase measure within the stationary measure of the1)
phase state at«50.090. The curves are labeled by the differe
magnetizations of blocks considered.
e
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a cluster if its standard Ising neighborhood, i.e., four nea
neighbors and the spin itself, is in the same spin state. C
ing our investigations, we present in Fig. 6 the estimation
energy density in the case when clusters are made of e
Toom or Ising neighborhood shapes. The probability tha
a stationary state obtained at some«, a given spin is in the up
state and stays in it until the next time step, i.e., its s
belongs to a11 cluster, is represented by the volume
11 clusters:uV11Toomu or uV11Isingu. Corresponding to the
two kinds of neighborhoods considered, the energy car
by a state is measured by the volume of spins not belong
to any cluster (udVToomu or udVIsingu in Fig. 6!.

The conclusion resulting is that stationary measures of
Toom model can mimic the measure of some equilibriu
system, although strong subordering properties of the lo
rule makes this kind of diffusion process always prese
Moreover, the slight difference between the parameter of
finite-lattice-size scalingn50.9 found by us andn51
proved rigorously for the two-dimensional Ising model, ind
cates a stronger influence of the finiteness of the lattice
in the Toom model than in the Ising model. However, t
character of the correlation decay and results of lar
fluctuation studies indicate that the stationary measure of
probabilistic Toom model is expressible in a Gibbsian fo
with respect to some, though possibly highly complicat
local Hamiltonian.
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FIG. 6. Probability that a given site belongs to a cluster made
Toom neighborhoods~lines! or made of Ising neighborhoods~sym-
bols and lines!. The curves denoteduVToomu and uVIsingu correspond
to the energy density carried by stationary states at the given n
level «. L5200 and the thermalization time is equal to 10 000 tim
steps.
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