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Gibbsian versus non-Gibbsian nature of stationary states
for Toom probabilistic cellular automata via simulations

Danuta Makowiet
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(Received 30 January 1997

Ising-type behavior found in cellular automata with the majority vote rule hints at the possible relation
between stationary states of these cellular automata and Gibbs states of some equilibrium statistical model.
Results of computer experiments aimed at testing properties of stationary states for Toom probabilistic cellular
automata such as decay of correlations, boundary configuration dependence, and large-fluctuation analysis are
presented. By the cluster volume analysis the estimation for energy density carried by stationary states is
proposed[S1063-651X97)00406-9

PACS numbds): 05.50+q, 05.70.Jk

[. INTRODUCTION zontal, or diagonal along the NW-SE directjoit has been
found in simulations that the system is chaotic there. A
The standard Toom probabilistic cellular automata are dechange of a single spin state can cause the cellular automata
fined on the square lattice of two-level spins with local in-system to be attracted to different stationary configurations
teractions being the perturbed majority vote of three spinstthat so-called damage-spreading stiifly; see[6] for de-
north, east, and centgd]. That is, the probability that a tails).
center spiro, , occupying anX,y) node on a square lattice The probabilistic Toom model provides the possibility to
takes at the next time the value, , depends on the spin study thermodynamics phenomena. In particular, stationary
states of its north neighbos,_;,, and its east neighbor states of this model can be considered as candidates for equi-
oyy+1, and itself as librium states of some thermodynamic system with the
parameter mimicking temperature effects. This way one can
look for links between the stationarity of probabilistic cellu-
lar automata and some equilibrium systgms|.
=1 _ In our experiments we always start with a system with all
2[1+(1720) 05y SOM Ty + 01y oxyea) ] () spins up (the magnetization is+1). The standard Monte
Carlo procedure leads such a system to the stationary con-
e . . figurations corresponding to a given thermal perturbation.
ministic maority vote rqle over the t.r langle formed by CeN- The stationary cellular automata states are represented as av-
ter, north, anql east neighboring spins and with prOb"’.‘b."'tYerages over thousands of stationary configurations obtained
¢ opposes this rule. One can notice that the deterministi, oy steps of discrete evolution. The size of the lattices
Toom rule, i.e.,e=0, becomes the Domany cellular au- ¢ongjgered in experiments varies frdm=15 (in the finite-
tomata rule for the zero temperaty3]. lattice-size scalingto L =500 (the locality study, depending

The Toom cellular automata are known from their critical o, e particular experimental demands, and thermalization
behavior. The property that is characteristic of the flrst—ordelﬁme is equal to 50

phase transition, ngme!y, the discontingity (?f. the order pa-"\vi our results we will discuss the following problem:
r:;meter — rgagn_et_lt;altlon f_ Cat’_‘ be l':dem'f'edl V\(’jh?n ON&yhether or not the stationary configurations arising on a spin
pt_anéges ran OT |n|_|a}t_c|0n |gfl_1ra 'Otns' -or plérey JEIerMINttice from the probabilistic cellular automata evolution, i.e.,
IStic dynamics, It an iniial configuration 1S random, 1.€., Spin Etates represented by an invariant measure with respect to the

PrOk{(Ux,y 1Ox—1y10x,y+ 1)‘>0'>,<,y}

Thus, with probability 1- &, the dynamics follows the deter-

states are chosen independently of each other with probabil:

; btai h b dic beh robabilistic cellular automata stochastic transformation,
Ity p to obtain an up state, then one observes ergodic benay,sqass the Gibbsian nature. By the Gibbsian nature of any
ior for all p enough far away from 1/2. The resulting station-

fi on is h ith all spi ¢ probabilistic measure.(o) we mean that we can associate
ary configuration Is homogeneous with all spiog (pr some ‘“reasonable” functioft{( o) [4] that represents energy
p>1/2) or all spindown (for p<<1/2). If an initial configu-

e ) ) carried by a configuratiow. Formally, the Hamiltoniari{

ration is prepared witlp being close to 1/2, then some other arising from the Gibbs measuge reads

stationary configurations appear, partially due to the periodic

boundary conditions of simulated systems. These stationary H(o)=—Inu(o)+const, 2)

configurations are calleflat-interface[4] or mixed[6] con-

figurations because they consist of two homogeneous disjointhere the temperature parameter is included in the Hamil-

areas, the boundary of which is a straight limertical, hori-  tonian. To give sense to the formal formy® one needs to
know how the probability of any finite volume configuration
o, depends on the boundary configuratian,c, i.e.,

*Electronic address: fizdm@univ.gda.pl Prol (o p|opc)}.
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The link between probabilistic cellular automata station-long correlations and zero of the total magnetization, one can
ary evolution and equilibrium systems in tepaceX time  expect that the stationary state has changed into a mixture of
lattice has been rigorously found. In this case the locahomogeneous islands of two basic phases: thgghase and
Hamiltonian is expressed by the logarithm of the transition(—) phase(see[12] for detaily. Moreover, these properties
probabilities(see, e.g.[9,3)). It has been also found that all give rise to the features of some equilibrium system even in
stationary measures of probabilistic cellular automata arisinghe absence of a Hamiltonian energy.
in the high-noise regime are GibbsigB. In this regime the
weakness of correlations between spins makes the probabil-

ity of any configuration in a finite volume independent of Il. EXPERIMENTS AND RESULTS
distant sping3]. ) _ _
However, there is still little known about the nature of A. The two-point correlation function
stationary measures for systems apart from this redirag First we want to determine,,, the critical value of the

Although the Gibbsian nature of the mentioned Domany celnoise parameter at which this critical phenomenon takes
lular automata model has been proved rigoroysly be-  place in the limit of infinite volume. The static critical be-
cause of the presence of long-range correlations in Tooravior of any thermodynamic system in the infinite lattice
stationary configurations, there exists a suspicion that thgmit can be extracted from the bulk properties at the critical
locality of interactions can be violated and one cannot givepoint of finite system§13,14. The current resolution is such

any reasonable description for these interactidri. that it is reasonable to approximate the finiteness of the
We observed correlations between two spins of the Toomgimulated lattice by14]

model: the originO and its sub-sequent neighbors on a

square lattice with respect to the noise lexelThe results ee(L) =gt AL~ (3

are shown in Fig. 1. One can notice the critical change in the

behavior of the two-point correlations with crossing 0.09.

Additionally, at thise value the average magnetization of the where v is one of the static critical exponents, ahdis a
whole configuration rapidly goes down to zero. For coupledconstant dependent on the quantity from which the finite-
map lattices it is known that increasing the spatial correlationattice-size effect is extracted. Furthermore, it is kndi]
leads to the merging of new ground stdt&s]. Therefore, in  that the following quantities also vary with the system size as
the case of the Toom model, because of the two properties &f*"”: the fourth-order magnetization cumultedt
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FIG. 2. A log-log plot of the lattice size dependericeo the M g(
maximum values of derivatives for the cumultahtof the absolute {,’/X\

value of the spin magnetizatigm|, the logarithm of this absolute
value In{ml), and the logarithm of the square of spin magnetization
In(m?P) to estimate the finite lattice size influence. Some STD errors (@) In(|X,,])
for this data are rather high, about 40%. The valuea,bfc pro-
vide linear regression coefficients for the presented data ith
correlation coefficients for these fits.

u=1 ' &
T 3(mH)?
wherem=L"93,0; is the magnetization, and the logarithm £=0.090
of any power of the magnetizatiom, e.g., In{m)), In(m?). e? b=0.11, r *=0.99

Thus the location of the maximum slope fdr, In(jm|), and
In(nm?) serves as an estimate of batrande (L ).

Our results forU, In(jm|), and Ingr?) presented in Fig. 2
lead tov~0.90=0.02. With v determined we can estimate
£4~0.091+0.002(at A\~0.07=0.01).

It is interesting to ask about the character of the decay o
the correlations with the increase of the spin distance. In Fig
3 we present this decay along the horizontal line. To find out et -
whether the decay is of power-law or exponential type we
present results on a log-log plfFig. 3@] and a log plot

€=0.095
¢=0.17, r >=0.98

|n[corr(ox1,y, chy)]

P e=o0085 [/l

a=0.18,r2=0774 /¥

pﬁ ’ ¢ ;5/
P/

[Fig. 3(b)]. For £ (0.090,0.100) we found that both nu- oAa / f

merical decay approximations, the exponential and powe e /\ £ £=0100 BAS

law, are faithful with respect to the accuracy of our simula- | A/l d=°-14v|"2=°-93 _ le>o01d5

tion errors. 30 25 20 A5 10 5 0
It is known that if the decay of correlations goes down as

li—j|~”, where|i—j| denotes distance between two spins ©) %1%

and »<2, this means that the system described is highly
correlated with the Hamiltonian not in a quadratic fof@j.
Accor.dmg to results c.)btamed by us, SU(.:h a Cpmpllcated N FiG. 3. (a) Power-law decay of correlations corﬂi,y,axzyy)
teraction can be considered as involved in stationary states of i spins along the horizontal lifwg-log plob. Val-
the Toom prObab”.'St'C quel with  (0.090,0.100), though . ues a,b presented for the linear fits are found for
the range of this interaction seems to not exceed 20 'att'C§<|x1—x2|<15. (b) Exponential decay of correlations
units. corr (O-Xl'y’O-XZ’y) between distant spins along the horizontal line
(log plot). The curves ina@) and(b) are labeled by the thermal noise
e. The values ofy,b,c,d provide linear regression coefficients for
The next experiment is designed to study the so-calledhe corresponding data witt? the correlation coefficients for these
long-range order, i.e., to verify how any finite volume con-fits.

B. Locality of interactions
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figuration is conditioned by the distant surrounding boundary 1

configuration[9,4,16. For this purpose we observe proper-  i(u|v)=lim,_..— W'”(Pmbu{%is typical foru}).

ties of a nonhomogeneous system. (4)
The nonhomogeneous system considered consists of two

homogeneous but disjoint areas where one area, dalldd  Furthermore, if one found, e.g., via simulations, that

put inside the other area, calledit. In such a system we test

the influence of one homogeneity on the other one. The out(&|v)

configurations can be seen as boundaries for the in configu-

rations. The experiment goes as follows. First, both configu- =|—2|n(ProqL{aI| spins are up in a squate|}—,_.0,
rations evolve individually to have both configurations ther-
malized at the corresponding noise levels and e,,; and (5)

with suitable initial phases. Then the in configuration is put . ) . )

to the middle of the out configuration. Then the next ther-then it would provide thait(s..[) =0, whered, is the mea-
malization process begins. The inhomogeneity of dynamic§ure concentrated on the all spin-up configurationsAss a

is kept all the time. The results obtained after this doubled'®n-Gibbsian measure, thenis non-Gibbsian alsp4]. We
thermalization time, by means of the average of magnetizaR€/fOrm experiments at~ ¢, and observe the probability of
tion along a lattice, for different noise levels, ands, and finding totally magnetized squares. Unfortunately, the events

different initial out phases are shown in Fig.[the initial with blocks x| totally magnetized appear so seldom with
phase of the in state is always )] | growing that it is difficult for us to estimate the correspond-

One can observe that the boundary state out determinTr%g probabilities. Therefore, we allow ourselves to violate a

. tle the total magnetization demand by setting it to
the phase of the in state whenever both states are represen ?rﬂ>0.9 (for better illustration other properties of the state

by a stationary state of one phase, i€n.equ<ec- The g 550 present probabilities to meet a block with magneti-

phase of the in state becomes the same as the out stateyion Im|>0.8,0.6,0.4, suitabje They results of these

although there are two areas that are still different from eaclock distributions are presented in Figiab They rather

other by the magnetization level. This “proves” Gibbsianessgiaple their values for; with | growing for blocks almost

nature of these stationary configuratidas). complete magnetized and slowly decrease in the case of less
The influence of the boundary when the states in and oyhagnetized blocks. However, because of the small amount

are near or within the critical regime is not obvious. Follow, of data, this suggestion needs more verification.

for example, the dotted lines in Figsta#-4(c), which rep- If e<e, then we can look for the{) phase in the

resent states with,,= 0.08 (both initial phasesfor distinct  (+) phase by estimating i(,u(_)l,u(ﬂ). If

ein. If the correlations between spins in the in states aré(u)|u+))>0, then both measures must be non-Gibbsian

significant, e, is aboute,, then one can observe the effect because they are stationary measures of the same interactions

caused by the periodic boundary conditions. In general, thg10]. The results fof|((—,| (1)) are presented in Fig(B).

periodic boundary conditions add a large scale of kizeto ~ According to them, the probability to find blocks with nega-

the system. Any configuration observed from this scale cafive magnetization very slowly decreases wiitgrowing.

be seen as the sea of the out configuration with infinite many

regular islands of the in state. If the in state is weak, by [ll. CONCLUSION

means of correlating neighboring spin states, then each is- h ined . f . .
land acts in isolation. However, the strong correlating prop- W€ have examined properties of stationary states in Toom

erties in the in state, together with good transmission propC€llular automata that are in the regime of the second-type

erties of the out states, <., yield that the in islands act phase transition. First, by varying the temperature parameter
Bour=Eer, ¥ e frome=0 toe=1/2 , ate € (0.09,0.10) we observe how

together as the boundary for the out configuration. The is¥ ™" - :
tationary states of the model change their basic property:

lands can easily communicate with each other through th h ¢ f h f eith h
out state by adjusting the out state phase to their propertie3oW these states transform from the states of either the

Finally, we observe that the phase of the out configuration i$ ) Phase or the £) phase into the equivalent mixture of
chaotic, i.e., undetermined, and the level of its magnetizatioﬁWO phasgs. . .

is random; see particular examples of such behavior in Fig. Toom Interactions have a so-called erodgr propetyit

4(d). denotes that any finite island of one phase is smashed by the

surrounding sea of the other phase. Therefore, stationary
states that are representatives of one phase possess good
transmission properties. After a short time the whole system
The basic notion for the last group of experiments resultsakes the phase of the out state. The dependence of a station-
from the so-calledwrong large-deviation propertie$4].  ary state island on the boundary conditions is continuous, i.e.
Namely, the probability that a configurationtaken from the local, for islands that are of one phase. One can say that after
probability distributiony is inside a finite volume\, a typi-  the thermalization process, which means adjusting the spins
cal configuration taken from some distributign decays ex- of an island, the stationary state remains the low-temperature
ponentially in the volume o\ with ratei(u|v), the relative  ground state of the Ising-type model.
entropy density of the measupewith respect to the measure However, if an island is of the stationary state with criti-
v. Therefore, by measuring this probability one can estimateal properties, then it can oppose the outside world. One can
the relative entropy density( u|v) as say that at some the eroder property is turned out by the

C. Block magnetization experiments
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FIG. 4. Magnetization of a spin site along the lattice. The total size of the latticB00; the inner lattice sizk;,= 300, &;,=0.07 (a),
0.09(b), 0.10(c), and 0.12(d); and different levels ot are denoted at the corresponding curves. The initial phasetaftates is either
(=) or (+), while thein state phase is always+(). The averages are made over 30 000 time steps. O denotes the center of the lattice.

temperature effects and an island can survive. One mightecessary condition for Ising-type transitions in coupled map
compare this observation with the notion of the balance belattices. Thus properties of stationary states for the Toom
tween the production of local errors and the transmissiormodel considered with> ¢, are generated by the extremely
strength that was considered by Boldrighétial.[15] as the  fragile balance present at the microscale. One can compare
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Toom neighborhooddines) or made of Ising neighborhoodsym-

bols and lines The curves denotel¥/roon and|Vigng correspond

0.03 to the energy density carried by stationary states at the given noise
level e. L=200 and the thermalization time is equal to 10 000 time

\\_ steps.
\

( (} (+))

— 0.02 4 he m08 a cluster if its standard Ising neighborhood, i.e., four nearest
= e \_\/\. neighbors and the spin itself, is in the same spin state. Clos-
- \\ \ﬂﬁi m<-0.7 ing our investigations, we present in Fig. 6 the estimation for
0.01 T TAa o energy density in the case when clusters are made of either
A _ <06 Toom or Ising neighborhood shapes. The probability that in
"'**v-v\,** a stationary state obtained at some given spin is in the up
0.00 . : | state and stays in it until the next time step, i.e., its site
10 15 20 25 30 belongs to a+1 cluster, is represented by the volume of
(b) block size / +1 clusters:|V, 11oon OF [V41isind. Corresponding to the

two kinds of neighborhoods considered, the energy carried
by a state is measured by the volume of spins not belonging

FIG.5. D fi ith i izel of block -
ecay ofi;(u|v) with growing sizel of a square bloc 10 any cluster [dVoq] of |dVIsing| in Fig. 6).

I X1 to estimate the relative entropy density fay i;( 5| us), with h lusi Iting is th . fth
6. the measure with respect to the stationary meagyet the The conclusion resulting is that stationary measures of the

critical regimee=0.095, and(b) i ()| x(+)) the “amount” of Toom model can mimic the measure of some equilibrium
the (—) phase measure within the stationary measure of thg ( System, although strong subordering properties of the local

phase state at=0.090. The curves are labeled by the different 'ule makes this kind of diffusion process always present.
magnetizations of blocks considered. Moreover, the slight difference between the parameter of the

finite-lattice-size scalingy=0.9 found by us andv=1

this phenomenon with the condition of the detailed balancdroved rigorously for the two-dimensional Ising model, indi-
of equilibrium states. cates a stronger influence of the finiteness of the lattice size

The Toom model is worth considering as it recalls thei? the Toom model than in the Ising model. However, the
Ising model. For the Ising model, the well-establishedcharacter of the correlation decay and results of large-
Pirogov-Sinai theony9,16] provides the tool for estimating fluctuation studies indicate that the stationary measure of the
energy of any finite volume configuration via the notion of aProbabilistic Toom model is expressible in a Gibbsian form
contour. The contour can be seen as the area separating H¥th respect to some, though possibly highly complicated,
mogeneous islands of pure phases. The local energy carriégcal Hamiltonian.
by the finite configuration is proportional to the total volume

of contours _that it cont_ains. It is not _difficult to estimate the ACKNOWLEDGMENTS
energy carried by stationary states if one assumes only the
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